

Lecture (04) TCP/IP protocol Suite

Dr. Ahmed M. ElShafee

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

Agenda

- TCP/IP Framework
- Internet
- Internetwork layer and IP Addresses
- Operation of TCP and IP
- TCP/IP Applications
- Classifying IP Addresses

TCP/IP Framework

- Like the seven-layer OSI Reference Model, TCP/IP protocols are based on a layered framework.
- TCP/IP has four layers

TCP/IP

Application

Transport

Internetwork

Network Interface

Dr. Ahmed ElShafee, ACU Fall 2013, Network

OSI TCP/IP

Application
Presentation Application
Session
Transport Transport
Network Internetwork
Data Link Network
Physical

٣

TCP/IP Layers
Application Layer
Transport Layer
Internetwork Layer
Network Interface Layer

TCP/IP Protocols

10									
	НТТР	TTP FTP		Telnet SMTP			SMTP	DNS	
	TCP				UDP				
	IP .			AF	ARP ICMP IGMI			IGMP	
	Ethernet			Token Ring		Other Link-Layer Protocols			

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

Network Interface layer

- The lowest level of the TCP/IP architecture is the Network Interface layer.
- It corresponds to the OSI Physical and Data Link layers.

Application

Transport
Internetwork

Network
Interface

- You can use many different TCP/IP protocols at the Network Interface layer, including Ethernet and Token Ring for LANs and protocols such as X.25, Frame Relay, and ATM for wide area networks (WANs).
- The Network Interface layer is assumed to be unreliable.

Network Interface Layer

Ethernet	Token Ring	Other Link-Layer Protocols
Ethornot	Token ming	Protocols

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

- InterNetwork layer
- The InterNetwork layer is where data is addressed, packaged, and routed among networks.
- Several important Internet protocols operate at the InterNetwork layer:
- Internet Protocol (IP): A routable protocol that uses IP addresses to deliver packets to network devices.
- IP is an intentionally unreliable protocol, so it doesn't guarantee

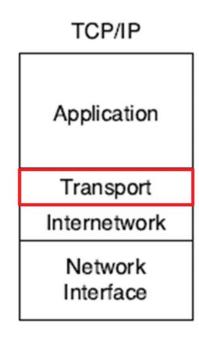
A delivery of information of ElShafee, ACU Fall 2013, Network I

TCP/IP

Application

Transport

Internetwork


Network Interface

- Address Resolution Protocol (ARP): Resolves IP addresses to hardware MAC addresses, which uniquely identify hardware devices.
- Internet Control Message Protocol (ICMP): Sends and receives diagnostic messages. ICMP is the basis of the ubiquitous ping command.
- Internet Group Management Protocol (IGMP): Used to multicast messages to multiple IP addresses at once.

Network Layer IP	ARP	ICMP	IGMP
------------------	-----	------	------

Transport layer

- The Transport layer is where sessions are established and data packets are exchanged between hosts.
- Two core protocols are found at this layer:
- Transmission Control Protocol (TCP):
 Provides reliable connection oriented transmission between two hosts.
- TCP establishes a session between hosts, and then ensures delivery of packets between the hosts.

 User Datagram Protocol (UDP): Provides connectionless, unreliable, one-to-one or one-to-many delivery

Transport Layer TCP UDP

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

Application layer

- The Application layer of the TCP/IP model corresponds to the Session, Presentation, and Application layers of the OSI Reference Model.
- A few of the most popular Application layer protocols are
- HyperText Transfer Protocol (HTTP): The core protocol of the World Wide Web
- File Transfer Protocol (FTP): A protocol that enables a client to send and receive complete files from a server

TCP/IP
Application
Transport
Internetwork
Network
Interface

- Telnet: The protocol that lets you connect to another computer on the Internet in a terminal emulation mode
- Simple Mail Transfer Protocol (SMTP): One of several key protocols that are used to provide e-mail services
- Domain Name System (DNS): The protocol that allows you to refer to other host computers by using names rather than numbers

Application Layer	НТТР	FTP	Telnet	SMTP	DNS
-------------------	------	-----	--------	------	-----

15

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

Internet

- the Internet links hundreds of millions of computer users throughout the world.
- Strictly speaking, the Internet is a network of networks.
- It consists of tens of thousands of separate computer networks, all interlinked, so that a user on any of those networks can reach out and potentially touch a user on any of the other networks.

- The father of the internet is the ARPANET, which was built by the US Department of Defense in 1969 to link defense installations.
- In the 1970s, ARPANET was split into two networks: one for military use (renamed MILNET) and the original ARPANET
- The two networks were connected by a networking link called IP — the *Internet protocol*
- Early IP was designed to allow 10 thousands of networks to be connected.
- By the mid-1980s, ARPANET was beginning to reach the limits of what it could do.

- National Science Foundation (NSF), set up a nationwide network designed to connect huge supercomputers, used to discover new prime numbers and calculate the orbits of distant galaxies, In fact, NSFNET replaced ARPANET as the new backbone for the Internet.
- The Net began to grow so fast that even NSFNET couldn't keep up, so private commercial networks got into the game.
- The size of the Internet nearly doubled every year for most of the 1990s.
- After millennium, the growth rate slowed a bit.
- However, the Internet still seems to be growing at the phenomenal rate of about 30 to 50 percent per year,

Internetwork layer and IP Addresses

- Introduction
- An IP address is a number that uniquely identifies every host on an IP network.
- IP addresses operate at the interNetwork layer of the TCP/IP protocol stack, so they are independent of lower-level Data Link layer MAC addresses, such as Ethernet MAC addresses.
- IP addresses are 32-bit binary numbers, which means that theoretically, a maximum number of available hosts is about 4 billion unique host addresses can exist throughout the Internet (2³² = 4.3 E9)
- Many experts predict that we will run out of IP addresses soon.

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

 a standard for 128-bit IP addresses has been adopted, to overcome that problem

Networks and hosts

- a 32-bit IP address actually consists of two parts:
- The network ID (or network address): Identifies the network on which a host computer can be found
- The host ID (or host address): Identifies a specific device on the network indicated by the network ID

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

The dotted-decimal notation

 In dotted-decimal notation, each group of eight bits — an octet — is represented by its decimal equivalent. For example, consider the following binary IP address:

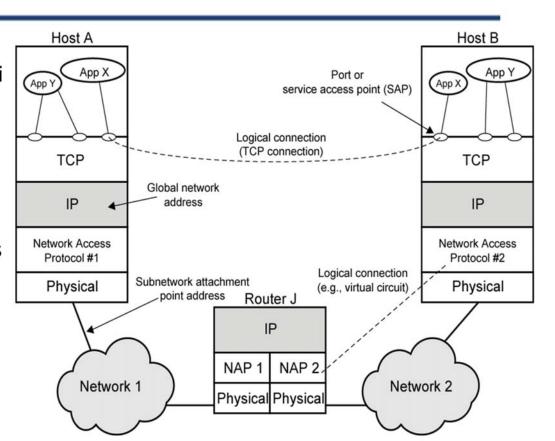
11000000101010001000100000011100

 To convert this value to dotted-decimal notation, first divide it into four octets, as follows:

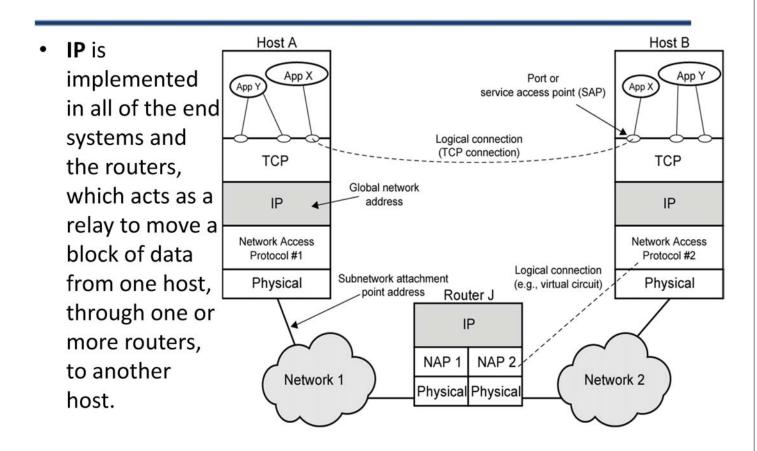
11000000 10101000 10001000 10001000	11000000
---	----------

Then, convert each of the octets to its decimal equivalent:

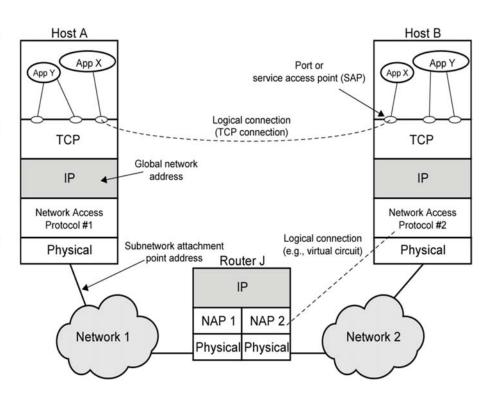
11000000	10101000	10001000	10001000
192	168	136	28

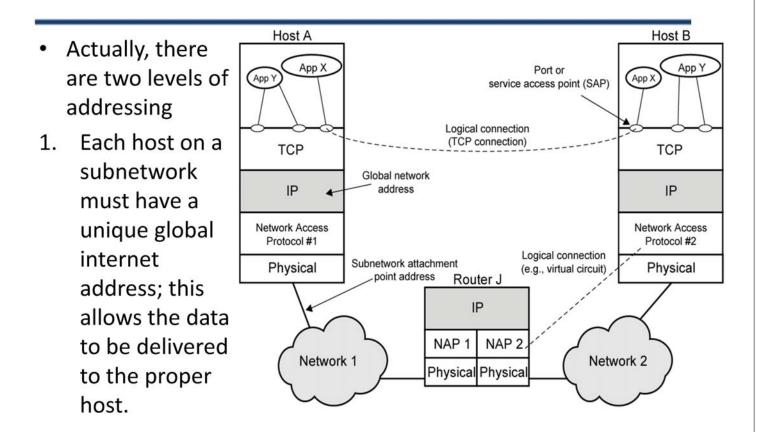

 Then, use periods or dots to separate the four decimal numbers, like this:

192.168.136.28

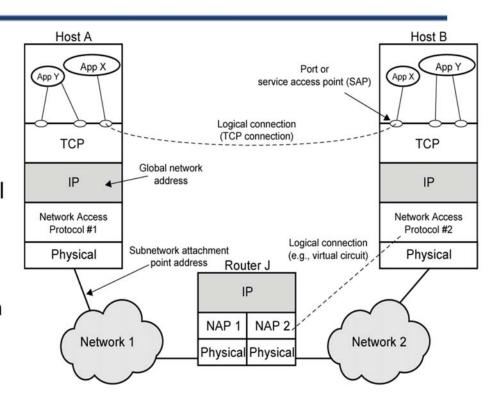

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

Operation of TCP and IP

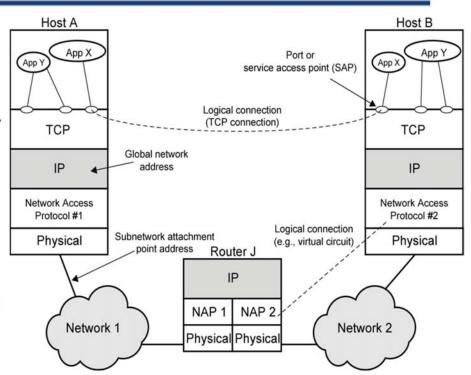

 The total communicati ons facility may consist of multiple networks, referred as subnetworks

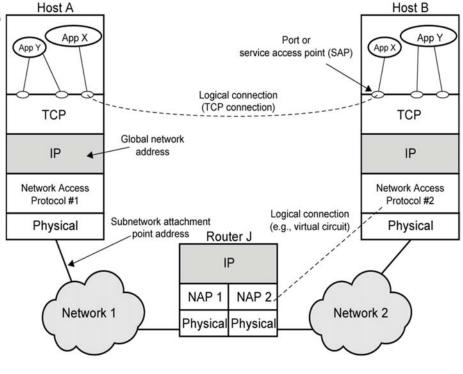


- Some sort of network access protocol, such as the Ethernet logic, is used to connect a computer to a subnetwork.
- This protocol enables the host to send data across the subnetwork to another host.
- if the target host is on another subnetwork, the router that will forward the data, using **IP** protocol.



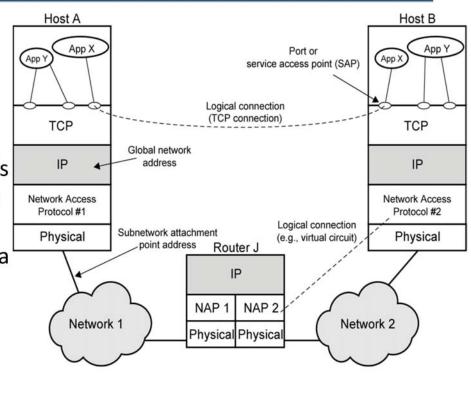
 TCP is implemented only in the end systems; it keeps track of the blocks of data to assure that all are delivered reliably to the appropriate application.


2. Each process with a host must have an address that is unique within the host; this allows the host-to-host protocol (TCP) to deliver data to the proper process. These latter addresses are known as ports.

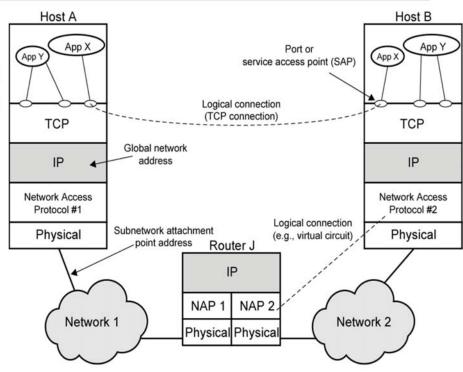

Example:

- A process on host
 A, wishes to send a
 message to another
 process on host B.
- The process at A

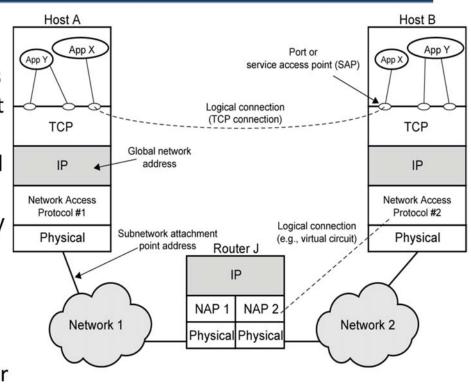
 (application layer)
 hands the message
 down to TCP with
 instructions to send
 it to host B.

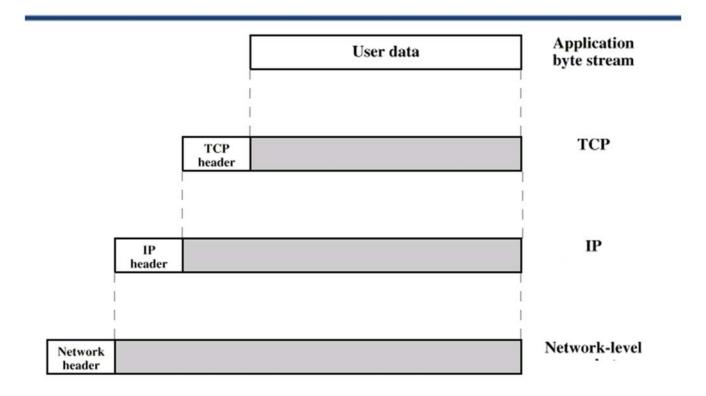


- The sending process generates a block of data containing control information and data than passes it to TCP.
- TCP hands the message down to IP with instructions to send it to host B.


.

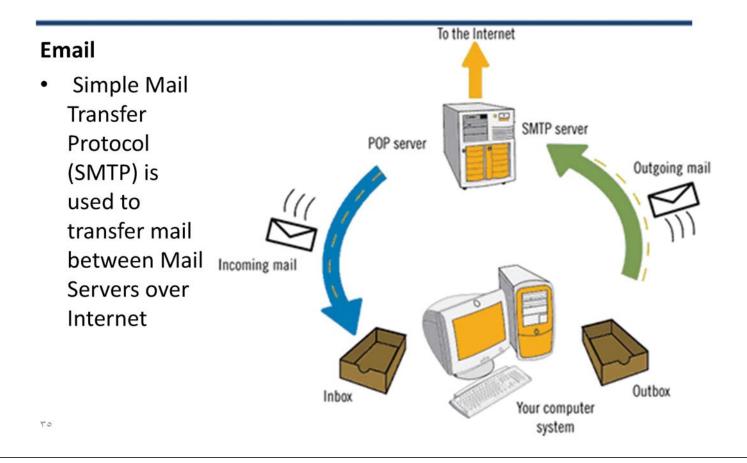
- TCP may break this block into smaller pieces to make it more manageable.
- To each of these pieces, TCP appends control information known as the TCP header, formatting a TCP segment.
- Note that IP need not be told the identity of the destination port.


- IP appends a header of control information to each segment to form an IP packets.
- These segments
 must be
 transmitted across
 one or more
 subnetworks and
 relayed through
 one or more
 intermediate


routers.

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

- IP hands the message down to the network access layer (e.g., Ethernet logic) with instructions to send it to router J (the first hop on the way to B).
- Network access layer appends its own header, creating a packet, or



TCP/IP Applications

Hyper text transfer protocol (http)

- is used to transfer web pages from a Web Server to Web Client (Browser)
- Web Pages are arranged in a directory structure in the Web Server
- HTTP supports Virtual Hosting (Hosting multiple sites on the same server)
- Popular Web Servers
 - Apache
 - Windows IIS

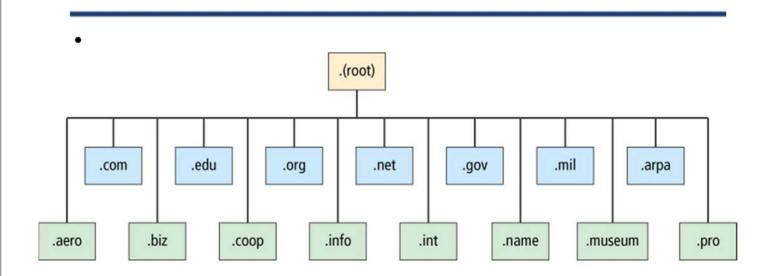
- Post Office Protocol (PoP) and Interactive Mail
 Access Protocol (IMAP) is used between Client and
 Mail Server to retrieve mails
- The mail server of a domain is identified by the MX record of that domain
- Popular Mail Servers
 - Microsoft Exchange Server
 - IBM Lotus

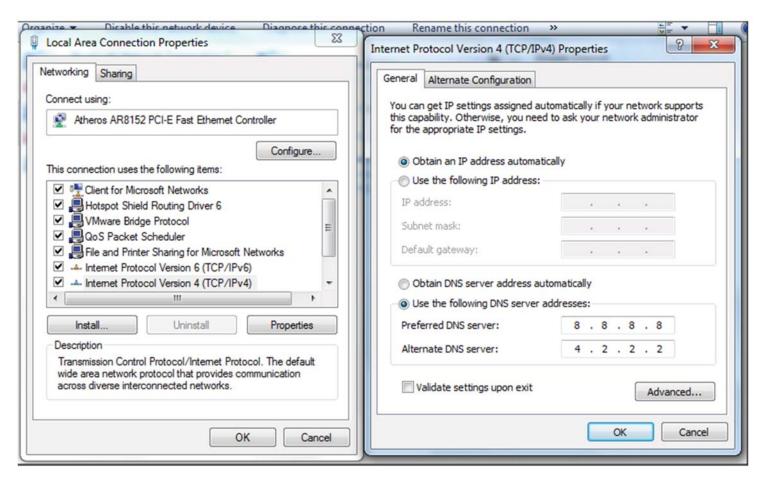
Webmail

 Webmail (or web-based email) is any email client implemented as a web application accessed via a web browser.

 Examples of webmail providers include AOL Mail Gmail, Outlook.com and Yahoo! Mail.

 Practically every webmail provider offers email access using a webmail client, and many of them also offer email access by a desktop email client using standard email protocols,




Dr. Ahmed ElShafee, ACU Fall 2013, Network I

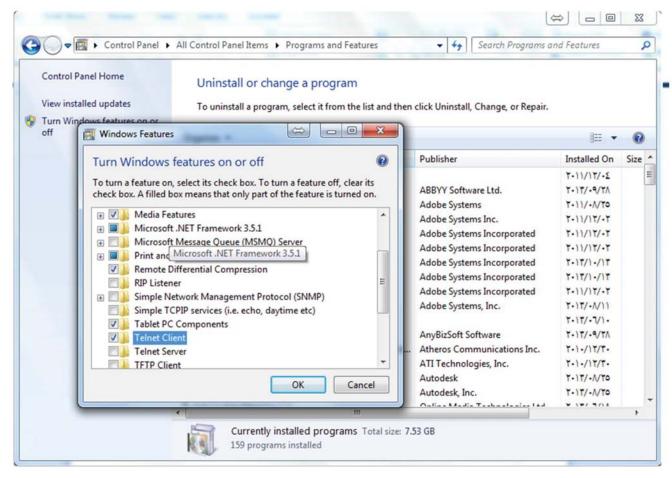
DNS

- A DNS server maintains the name to IP address mapping of the domain for which it is the name server.
- The DNS server for a domain is registered with the domain registrar and the entry is maintained by the Internet Root-Servers or Country Level Root-Servers.
- Whenever a server is queried, if doesn't have the answer, the root servers are contacted.
- The Internet root servers refer to the DNS server for that domain (in case the domain is a top level domain) or the Country Root Server (in case the domain is country level domain).

٣V

The File Transfer Protocol (FTP)

- Is used to send files from one system to another under user command.
- Both text and binary files are accommodated.
- FTP sets up a TCP connection to the target system for the exchange of control messages.


 Once a file transfer is approved, a second TCP data connection is set up for the data transfer.

- Data is being sent without the overhead of any headers or control information at the application level.
- When the transfer is complete, the control connection is used to signal the completion and to accept new file transfer commands.

TELNET

- Provides a remote logon capability, which enables a user at a terminal or personal computer to logon to a remote computer and function as if directly connected to that computer.
- The protocol was designed to work with simple scroll-mode terminals.
- Terminal traffic between User and Server TELNET is carried on a TCP connection.


```
Note: If you have problem with Backspace key, please make sure you configure you r terminal emulator settings. For instance, from HyperTerminal you would need to use File->Properties->Setting->Back Space key sends.

Main Menu

1. ADSL Link State
2. LAN
3. WAN
4. DNS Server
5. Route Setup
6. NAT
7. Firewall
8. Quality Of Service
9. Management
10. Passwords
11. OamDiag
12. Reset to Default
13. Save and Reboot
14. Exit
-> ______
```

Classifying IP Addresses

- In IP addressing scheme, some arbitrary number of bits for it is assigned an for network ID, The remaining bits then be used for the host ID.
- suppose that half of the address (16 bits) would be used for the network, the remaining 16 bits used for the host ID. result of that scheme would be 65,536 networks, each of those networks could have 65,536 hosts.
- Suppose that a network of 1,000 computers joins the Internet and is assigned one of these hypothetical network IDs, that network then wast 64,000 IP addresses for hosts.

- Solution, is IP address classes
- The IP protocol defines five different address classes: A, B, C, D, and E.
- of the first three classes, A–C, uses a different size for the network ID and host ID portion of the address.
- Class D is for a special type of address called a multicast address.
- Class E is an experimental address class that isn't used.

Class A 0 Network ID Host ID

Network ID Host ID

Class B 1 0 Network ID Host ID

Network ID Host ID

- The first four bits of the IP address are used to determine into which class a particular address fits, as follows:
- If the first bit is zero, the address is a Class A address "0xxx"
- If the first bit is one and if the second bit is zero, the address is a Class B address. "10xx"
- If the first two bits are both one and if the third bit is zero, the address is a Class C address. "110x"
- If the first three bits are all one and if the fourth bit is zero, the address is a Class D address "1100"
- If the first four bits are all one, the address is a Class E address. "1111"

IP Address Classes							
Class	Address Number Range	Starting Bits	Length of Network 1D	Number of Networks	Hosts		
A	1-126.x.y.z	0	8	126	16,777,214		
В	128-191.x.y.z	10	16	16,384	65,534		
С	192-223.x.v.z	110	24	2,097,152	254		

Class A addresses

- Class A addresses are designed for very large networks, as only eight bits are allocated to the network, first of these bits is used to indicate that the address is a Class A, only 126 Class A networks can exist in the entire Internet.
- The last 3 octets are used for hosts, so each network can

IP Address Classes							
Class	Address Number Range	Starting Bits	Length of Network 1D	Number of Networks	Hosts		
Α	1-126.x.y.z	0	8	126	16,777,214		

 Only about 40 Class A addresses are actually assigned to companies or organizations, The rest are either reserved by Internet Assigned Numbers Authority (IANA)

	Some Well-Known Class A Networks					
Net	Description	Net	Description			
3	General Electric Company	32	Norsk Informasjonsteknology			
4	Bolt Beranek and Newman Inc.	33	DLA Systems Automation Center			
6	Army Information Systems Center	35	MERIT Computer Network			
8	Bolt Beranek and Newman Inc.	38	Performance Systems International			
9	IBM	40	Eli Lilly and Company			
11	DoD Intel Information Systems	43	Japan Inet			
12	AT&T Bell Laboratories	44	Amateur Radio Digital Communications			
13	Xerox Corporation	45	Interop Show Network			
15	Hewlett-Packard Company	46	Bolt Beranek and Newman Inc.			
16	Digital Equipment Corporation	47	Bell-Northern Research			

Some Well-Known Class A Networks

Nec	Description	Net	Description
17	Apple Computer Inc.	48	Prudential Securities Inc.
18	MIT	51	Department of Social Security of UK
19	Ford Motor Company	52	E.I. duPont de Nemours and Co., Inc.
20	Computer Sciences Corporation	53	Cap Debis CCS (Germany)
22	Defense Information Systems Agency	54	Merck and Co., Inc.
25	Royal Signals and Radar Establishment	55	Boeing Computer Services
26	Defense Information Systems Agency	56	U.S. Postal Service
28	Decision Sciences Institute (North)	57	SITA
29-30	Defense Information Systems Agency		

Class B addresses

- the first two octets of the IP address are used as the network ID, and the second two octets are used as the host ID.
- in order to indicate that the address is Class B the first two bits of the first octet are required to be 10, As a result, a total of 16,384 Class B networks can exist.

		IP Ad	dress Class	es		
Class	Address Number Range	Starting Length of Bits Network 1D		Number of Networks	Hosts	
В	128-191.x.y.z	10	16	16,384	65,534	

Each Class B network can accommodate more than 65,000 hosts.

 The problem with Class B networks is that even though they are much smaller than Class A networks, they still allocate far too many host IDs.

00

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

Note:

- Class A addresses end with 126.x.y.z, and Class B addresses begin with 128.x.y.z.
- What happened to 127.x.y.z? This special range of addresses is reserved for loopback testing, so these addresses aren't assigned to public networks.

Class C addresses

- the first three octets are used for the network ID, and the fourth octet is used for the host ID.
- with 24 network ID bits, Class C addresses allow for more than 2 million networks, each Class C network can accommodate only 254 hosts

IP Address Classes					
Class	Address Number Range	Starting Bits	Length of Network 1D	Number of Networks	Hosts
С	192-223.x.y.z	110	24	2,097,152	254

The problem with Class C networks is that they're too small.

Dr. Ahmed ElShafee, ACU Fall 2013, Network I

Thanks,..
See you next week (ISA),...